Oklahoma State University-Oklahoma City

Academic Advisor


Donna Pergrem
Academic Advisor
(405) 945-3215


STEM Scholarship Application



Ryan K. Hightower, PLS
Department Head, Surveying Technologies
(405) 945-8615


Remote Sensing Analyst

In a nutshell, remote sensing refers to any technique whereby information about objects and the environment is obtained from a distance. A bat's navigation system is one form of remote sensing. In this case, acoustic waves are used to "see" objects and determine their position. Remote sensing in the context of obtaining geospatial information is based on measuring variations in how electromagnetic waves interact with objects. The wavelengths typically involved not only include visible light, but also near-infrared, mid-infrared, thermal and microwave energy. Hence, remote sensing systems often permit us to greatly expand our spectral view of the earth and "see" the world much more clearly than we can with the unaided eye or any other sensor restricted to visible wavelengths.


Remote Sensing AnalystToday, an extremely broad range of remote sensing systems are used to collect data from both aerial and spaceborne platforms. These systems include everything from aerial cameras to earth orbiting multispectral sensors, and imaging radar systems. Remote sensing, like photogrammetry and GIS, is a rapidly changing field. Three recent developments in particular are fueling great interest and activity in the field. First, there is substantial research and development underway in the area of hyperspectral remote sensing, which involves systems that sense in literally hundreds of very narrow spectral bands simultaneously. This approach greatly increases the information and detail that can be obtained about objects on the earth's surface. Second, a series of recently launched satellite-borne remote sensing systems form NASA's Earth Observing System (EOS), which is a primary component of the Earth Science Enterprise (ESE). The ESE is an international earth science program aimed at proving the observations, understanding, and modeling capabilities needed to assess the impacts of both natural events and human-induced activities on the earth's environment (www.earth.nasa.gov/).


A third major influence on the field of remote sensing today is the launch of commercial high-resolution earth-orbiting systems. These systems supply data with a ground sampling distance on the order of 1 meter (3 feet). This will permit objects of approximately one meter in length to be identified on the earth's surface using a satellite in outer space. Most will also be pointable, with their optical systems being controlled by ground command. This will enable frequent observation of areas that are not directly below the satellite and it will also allow the collection of stereoscopic (3D) data. These high-resolution systems are expected to provide a quantum jump in the commercial applications of remote sensing, and hence the demand for professionals in the field. In all, some 45 new satellite remote sensing systems are planned for launch over the next three years (www.ersc.wisc.edu/ersc/).


Remote sensing is a very broadly based field. Professionals with backgrounds in such diverse areas as agriculture, archaeology, business, ecology, engineering, forestry, geography, geology, range management, urban and regional planning, water resources, wetland ecology, wildlife management, manufacturing and machine vision, meteorology, and oceanography use the information processed from remotely sensing data. In addition, many remote sensing scientists are involved in basic research developing new sensor systems, other instruments, and defining new analytical techniques. Many such people are also actively engaged in the area of digital image processing, which is changing rapidly with major improvements in the power of computer systems, networks, and visualization techniques.